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Abstract 

 

Despite extensive global research into genetic predisposition for severe COVID-19, 

knowledge on the role of rare host genetic variants and their relation to other risk factors 

remains limited. Here, 52 genes with prior etiological evidence were sequenced in 1,772 

severe COVID-19 cases and 5,347 population-based controls from Spain/Italy. Rare 

deleterious TLR7 variants were present in 2.4% of young (<60 years) cases with no reported 

clinical risk factors (n=378), compared to 0.24% of controls (odds ratio (OR)=12.3, 

p=1.27x10-10). Incorporation of the results of either functional assays or protein modeling led 

to a pronounced increase in effect size (ORmax=46.5, p=1.74x10-15). Association signals for 

X-chromosomal TLR7 were also detected in the female-only subgroup, suggesting the 

existence of additional mechanisms beyond X-linked recessive inheritance in males. 

Additionally, supporting evidence was generated for a contribution to severe COVID-19 of 

the previously implicated genes IFNAR2, IFIH1 and TBK1. Our results refine the genetic 

contribution of rare TLR7 variants to severe COVID-19, and strengthen evidence for the 

etiological relevance of genes in the interferon signaling pathway. 

 

 

Keywords: SARS-CoV-2, host genetics, Toll-like receptor 7, targeted sequencing, rare 

variants, variant collapsing analysis, burden analysis, innate immunity, immune deficiency, 

infection 
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Introduction 

The SARS-CoV-2 pandemic has posed major challenges to societies and health care 

systems around the world. Clinically, SARS-CoV-2 infection results in a broad spectrum of 

outcomes, ranging from the complete absence of symptoms to severe illness and even 

death secondary to the associated lung disease (severe COVID-19). Extensive research has 

been conducted to elucidate the causes of these inter-individual differences, with the aim of 

informing drug development programs and designing strategies for individual risk prediction 

in future viral pandemics. This has demonstrated that the observed variability is explained in 

part by demographic and clinical risk factors. Specifically, increased age, male sex, 

comorbidities like diabetes, coronary artery disease (CAD), high body weight, and 

hypertension1–3, as well as the presence of auto-antibodies4 have been suggested to be 

associated with severe COVID-19. In addition, research has shown robust associations 

between severe COVID-19 and common genetic variants in the host, which are typically 

characterized by a minor allele frequency (MAF) of >1% and modest effect sizes5–10. 

 

Monogenic causes have been suggested in individuals with severe COVID-19, as based on 

the identification of highly penetrant pathogenic variants in TLR7 [OMIM: 300365], TBK1 

[OMIM: 604834], and IFNAR1 [OMIM 107450] in individual families11–14. To date, only a 

limited number of studies have performed systematic investigations of the role of rare 

genetic variants in large severe COVID-19 cohorts9,15,16. At the population level, the most 

compelling evidence for this to date has been reported for rare variants in the X-

chromosomal gene TLR717–22. The corresponding protein TLR7 (toll-like-receptor 7) is a 

receptor for single-stranded RNA and is central to SARS-CoV-2 host defense23. The 

suggested pathomechanism of TLR7 rare variants in males with severe COVID-19 is X-

linked recessive loss-of-function19. Since TLR7 escapes X-inactivation24, this hypothesis 

does not explain recent findings of rare deleterious TLR7 variants in females with severe 

COVID-1915.  
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Given prior epidemiological evidence for a contribution of age, sex, and additional clinical 

risk factors to the risk for severe COVID-19, the aim of the present study was to empower 

the search for rare variant associations by performing stratified analyses in two ethnically 

homogeneous cohorts. For this purpose, 52 candidate genes for severe COVID-19, 

including TLR7, were sequenced in 1,772 individuals from Spain and Italy who had been 

hospitalized for COVID-19 and had required respiratory support, and 5,347 individuals from 

the general Spanish/Italian populations. Notably, the severe COVID-19 cases were recruited 

prior to vaccine availability, thus allowing analysis of the virus-naive host reaction to SARS-

CoV-2 infection. All individuals had undergone previous array-based genotyping as part of 

prior genome-wide association studies (GWAS)25,26. The candidate gene sequencing 

approach was based on the cohort's informed consent on targeted follow-up sequencing. 

Together with available clinical information, sequencing data were then analyzed for single 

variant associations and gene burden using different stratified approaches, including distinct 

phenotype definitions and variant pathogenicity levels. 

Subjects and Methods 

Candidate gene selection 

The available informed consent documentation allowed follow up sequencing only, and 

precluded systematic approaches such as exome sequencing (ES). Therefore, 55 genes 

were selected in August 2020, based on evidence available at that time. These comprised 

14 genes from early GWAS loci5,25; five genes from diagnostic ES11,13; and 36 genes with 

functional evidence, which have been implicated previously in viral defense or pathogen 

immunity (Figure 1a). For each gene, the evidence for selection is presented in Table S1. 

Three genes (CCL3, CXCL1, CFD) were subsequently excluded from the analysis, since the 

size of the respective covered region post quality control (QC) was less than 50% of the 
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originally targeted region. Detailed information on the coverage of these genes, and the 

number of variant sites per gene, is provided in Table S1. 

Study design and phenotype definition 

Coding regions were sequenced using single-molecule Molecular Inversion Probes (MIPs)27, 

in 9,104 Spanish/Italian individuals from the Severe COVID-19 GWAS cohort25,26 (see 

Supplemental Methods). Following post-sequencing QC, which included the use of array-

based genotype data for population inference and relatedness filtering (Figure 1b), a total of 

7,119 individuals remained for analysis. Data analysis included (i) single variant association 

analysis and (ii) rare variant collapsing analysis. Both analyses were performed using four 

case-control definitions (Table 1) which involved one main analysis comprising the entire 

cohort, and three stratified analyses. The stratified analyses were performed in order to 

investigate the contribution of rare variants in individuals with otherwise low epidemiological 

risk (POPlowrisk, COVhosp by risk factors), and the potential contribution of rare variants to the 

level of disease severity (COVhosp by respiratory support). Each of the four analyses was 

repeated separately for males and females, in view of prior reports of sex-differences in 

etiological risk3. Notably, some COVhosp individuals (66 of 1,772) did not have sufficient 

information on comorbidities and were therefore excluded from the risk factor based 

stratifications (POPlowrisk, COVhosp by risk factors). 

Cohort characteristics 

The recruitment procedure, sample collection, and DNA extraction were conducted by the 

Severe COVID-19 GWAS group (Figure 1b) and are described elsewhere26. Approvals were 

obtained from the relevant ethics committees (listed in Supplemental Methods), and 

informed consent was obtained. Individuals hospitalized for severe COVID-19 (COVhosp) 

were collected at several centers in Spain and Italy in 2020 as part of the first outbreaks of 

the pandemic in Europe. Severe COVID-19 was defined as requiring respiratory support, i.e. 

the necessity for oxygen supplementation. While other definitions exist, this approach was 
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chosen to ensure feasibility26. Following QC (see next paragraph) the cohort comprised: (i) 

1,772 COVhosp individuals (n=1,008 from Italy, n=764 from Spain; Figure 1c, Table 1); and (ii) 

5,347 population-based controls (n=1,408 from Italy, n=3,939 from Spain). In total, 38% of all 

individuals were female. Respiratory support for COVhosp individuals was documented as the 

maximum support required during hospitalization: oxygen mask only (level 1, lowest), non-

invasive ventilation (level 2), invasive ventilation (level 3), or extracorporeal membrane 

oxygenation (ECMO, level 4, highest). For the majority of the COVhosp individuals (1,706 of 

1,772) data were available on comorbid CAD, diabetes, and hypertension (see Figure S1 for 

further information including subcohort (Italy/Spain) specific distribution of risk factors).  

Quality control and data processing 

After library preparation and sequencing using MIPs27 (2x150 bp, paired-end, see 

Supplemental Methods), data were processed using an MIP-specific pipeline that included 

several filter and QC steps (Supplemental Methods) and various tools28–34. DNA QC, 

population inference, and relatedness filtering had been performed previously by the Severe 

COVID-19 GWAS Group25,26 using their array-based genotype data. 

Two patients in the Asano et al.19 study had phenotypes, age, sex, and rare TLR7 variants 

that were identical to those in the present data, suggesting a sample overlap. After 

recontacting the groups responsible for the recruitment of these two individuals, a total of 82 

individuals who may have been common to other research groups were identified. Rare 

TLR7 variants of previously reported individuals are labeled accordingly (Figure 5, Table 

S2). 

Single variant analysis 

Analysis of the present cohort. An additive non-singleton single variant association test was 

performed using logistic regression with plink35 v2.0 and firth correction, as well as age, sex, 

age2, age*sex, and the first 10 principal components (PCs) as covariates. The number of 

PCs was chosen in accordance with Degenhardt et al.26 and the COVID-HGI exome wide 
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association study15. As the target region spans only about 0.003% of the human genome, 

the PCs were calculated using the respective array-based genome-wide genotype data 

(Degenhardt et al.26) to maximize the capture of population structure. As case-control ratios 

and other sample characteristics were substantially different between both populations, 

logistic regression was performed separately for the Italian and the Spanish cohorts, and the 

results were then meta-analyzed using METAL36. We applied two thresholds for multiple 

testing: The “strict” threshold was established using the Bonferroni method, which involved 

correction for the number of analyses (four case-control definitions, three sex-based 

stratifications) and the number of tested variants (strict, =6.7x10-6). To take the potential 

correlation of the different analyses into account, a “lenient” significance threshold was 

applied, involving correction for the number of tested variants only (lenient, =4.1x10-5). 

 

Replication cohorts. Whenever COVID-HGI release 7 analysis A2 summary statistics7 were 

used as replication cohort, this refers to the leave-one-out-HOSTAGE dataset (which 

excludes all individuals who were common to the present cohort and the COVID-HGI). For 

comparison and meta-analysis of the present single variant association results with those of 

the Regeneron dataset16, the results of the POPall analysis and the POPlowrisk analysis 

(without sex stratification) were followed up for all variants with OR>5 and p<0.05 in our 

cohort. When associations for these variants were reported in the Regeneron Browser (see 

Web Resources), the respective results were filtered for: (i) the use of Exome data (instead 

of imputed data); (ii) a phenotype corresponding to that used in the present study (“COVID-

19 positive severe vs COVID-19 negative or COVID-19 status unknown” or “COVID-19 

positive hospitalized vs COVID-19 negative or COVID-19 status unknown”, as defined in 

Kosmicki et al.16); (iii) “European” or “pan-ancestry” ancestry; and (iv) the analysis type 

“meta-analysis”. For each variant, the results of the analysis that included the maximal 

number of cases were selected. 
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Gene-based rare variant collapsing analysis 

Variant collapsing (or: burden testing) is a widely used approach that is applied to increase 

statistical power for the testing of rare variants. Here, variants from distinct genetic regions 

(e.g., in the present study, genes or gene groups) are combined, and testing is performed for 

these variant groups rather than for single variants. 

 

Definition of variant classes.  The present analyses considered two allele frequency groups: 

MAF<1% and MAF<0.1% (defined as maximal MAF in this cohort or in gnomAD r2.1 non-

Finnish European (NFE) exomes). Cohort allele frequencies were calculated using plink 

v2.0. Deleteriousness classes SYN, M1, M3, M4, and C10+M1 were used. M1, M3, and M4 

are similar to those described in Kosmicki et al.16. The M1 class is restricted to pLoF variants 

that are defined as having an Ensembl Variant Effect Predictor (VEP)33 impact of “HIGH”. M3 

contains all M1 variants, plus variants with a VEP impact of “moderate” but not missense 

and missense variants for which five of five prediction algorithms (SIFT, PolyPhen2-HDIV 

database, PolyPhen2-HVAR database, LRT, MutationTaster) predict deleteriousness. M4 

contains all M3 variants plus missense variants for which at least one of the five algorithms 

predicts a deleterious effect. SYN contains synonymous variants only, and functions as a 

control class. C10+M1 contains all pLoF (M1) variants and all variants with a CADD v1.637 

(Combined Annotation Dependent Depletion) score greater than 10, as used by 

Kousathanas et al.9. 

 

TLR7-specific variant definitions. For TLR7, two additional gene-specific deleteriousness 

classes were created. The first one comprised biochemically loss-of-function (bLoF) variants, 

i.e. all variants reported as being LoF on the basis of biochemical tests in previous 

research18–20. Synonymous TLR7 variants were inspected for potential cryptic splicing effects 

using spliceAI38. The second class (3D-P) comprised variants that were deemed pathogenic 

or likely pathogenic based on protein structural analyses. Herefore, each of the mutation 
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sites was analyzed in the context of its structural environment and with regards to changes 

in protein folding stability. The latter analyses aimed to address whether pathogenicity can 

be inferred from the extent of mutation-induced changes in the structural integrity of the 

TLR7 dimer (see Supplemental Methods39–42). 

 

Statistical analysis. For the statistical analysis of the collapsed variants, the Cochran–

Mantel–Haenszel (CMH) test (plink v1.9 implementation, dominant model) was used, as 

previously described43. While other methods exist, the CMH test was chosen as it was 

developed for case-control studies with subgroups of different characteristics by performing 

internal stratification while still generating overall test statistics for the entire cohort44. 

Moreover, the CMH test can handle rare events45, which is especially useful for rare variant 

collapsing analysis. The stratification categories used for the CMH-test were subcohort (Italy, 

Spain) and sex (male, female). Similar to the single-variant association analyses, two 

thresholds for statistical correction were applied: The “strict” definition was performed 

according to Bonferroni, and accounted for all performed tests (tested genes, variant 

categories, case-control definitions, =8.7x10-6). The “lenient” threshold considered that the 

case-control definitions and the different variant categories, are correlated, and therefore 

corrected for the number of tested genes only (=9.6x10-4). Data from the GenOMICC-

study9 was used for a replication attempt, details for which are provided in the Supplemental 

Methods. 

Results 

Single variant analyses identify etiological variant in TBK1  

Within the 52 genes, 3,218 high-confidence variants were identified across the entire cohort, 

95% of which were rare (n=3,059; MAF < 1%). Of these rare variants, 28.6% had no 

reported frequency in gnomAD r2.1 exomes (n=874, Figure 1d, Figure S2). More 

specifically, 2,007 singletons (i.e., variants that occur in only one individual) were observed, 
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including 111 putative loss-of-function (pLoF) variants. These were present in 31 COVhosp 

individuals, and 77 population-based controls (1.75% vs 1.44%; three individuals carried two 

variants, respectively). Within the subset of COVhosp individuals with no reported risk factors, 

eight singleton pLoFs were observed in seven individuals (1.85%), all of which were 

heterozygous and two of which were found in one individual (Table S3). For these seven 

individuals, the distribution of age and level of respiratory support did not differ significantly 

from those of the remaining COVhosp individuals with no reported risk factors (Welch’s 

p>0.39). 

 

Next, formal association testing for the 1,211 non-singleton variants was performed using 

Firth’s logistic regression and the covariates age, sex, age2, age*sex, and 10 principal 

components (PCs) obtained from prior array-based genotyping (see Methods). This was 

performed separately for the Spanish and Italian cohorts, and the results were meta-

analyzed using inverse variance based meta-analysis (Figure 2, Figure S3). Overall, seven 

variants had p-values below the strict significance threshold (see Methods). All of these 

seven variants were associated at genome-wide significance (and with the same direction of 

effect) in the independent data freeze of the global COVID-19 Host Genetics Initiative (HGI)7 

(release 7, see Methods). Variants associated with nominal significance (p < 0.05) and 

gnomAD r2.1 NFE exomes-AF > 0.01% are reported in Table S4. 

 

Given the limited statistical power for single-variant analyses, candidate variants (defined as 

high effect size estimates (OR > 5) and nominal significance (p < 0.05)) from the POPall and 

POPlowrisk analyses (non sex-stratified) were followed-up in the Regeneron dataset (see 

Methods). A total of 62 variants, all of which had an MAF < 0.2% and were absent from the 

COVID-19 HGI data, met these criteria. Of those, 38 variants were also present in the 

Regeneron dataset (Table S5). The most significant variant was a missense variant in TBK1 

(p.Arg358His, chr12:64878163:G:A (hg19), CADD=23.3, REVEL=0.259), which showed 

effect sizes of >20 in both cohorts (Regeneron: OR=24.2, confidence interval = [3.64, 
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160.47], p=0.00097; present study: OR=30.0 [2.71, 332.6], p=0.0056). In a meta-analysis of 

both cohorts, this variant showed strong association with severe COVID-19 (p=1.67x10-05, 

OR=26.3 [5.93, 116.2]). 

Gene-based rare variant collapsing analysis confirms TLR7 association  

To increase statistical power, gene-based collapsing analyses were performed. For this 

purpose, variants were assigned to: (i) two allele frequency groups (MAF<0.1% and 

MAF<1%); and (ii) five classes of deleteriousness (M1, M3, M4, C10+M1, SYN; see 

Methods). Variant counts per class are provided in Figure S2. For each combination of MAF, 

deleteriousness and gene, statistical association analyses were performed using the CMH 

test. The results are reported in Figure 3 for MAF<0.1% and in Figure S4 for both MAF<1% 

and sex-stratified analyses, respectively. At strict threshold definition (Methods), significant 

associations were obtained for TLR7 in: (i) the POPlowrisk analysis overall (C10+M1, 

MAF<0.1%; carriers: 9/378 cases vs. 13/5347 controls; p=1.27x10-10, OR=12.3 [4.7, 32.2]; 

Figure 3); and (ii) the female-only subgroup (C10+M1, MAF<0.1%; 4/126 vs. 5/2102; 

p=1.75x10-09, OR=24.8 [5.9, 105.2]; Figure S4). Suggestive evidence (at lenient threshold, 

see Methods) was obtained for two additional genes: (i) IFNAR2 [OMIM: 602376] (POPall, 

C10+M1, MAF<1%; 60/1772 vs. 73/5347; p=2.61x10-04, OR=1.9 [1.3, 2.7]; Figure S4); and 

(ii) IFIH1 [OMIM: 606951] (COVhosp by respiratory support, C10+M1, MAF<1%; 54/478 vs. 

36/661; p=3.60x10-04, OR=2.2 [1.4, 3.4]; Figure S4). All associations with nominal 

significance (p<0.05) are listed in Table S6. 

 

To investigate whether genes with related functions were enriched for rare variants, eight 

gene sets were defined (Table S7), and a collapsing analysis based on each gene set was 

conducted. No significant results were obtained after strict correction for multiple testing 

(Figure S5). Nevertheless, the most significant associations were observed for the set of 

immunodeficiency genes (n=15), and this remained nominally significant even after the 

exclusion of TLR7. 
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Identification of a low-frequency TLR7 risk variant in the Spanish population  

In view of both the highly significant results presented above and robust prior evidence for 

the involvement of TLR7 in severe COVID-1911,12,18–21, more detailed investigations were 

performed to characterize the rare TLR7 variant associations in the present cohort. Overall, 

the identified TLR7 variants comprised 26 missense, one 3’-UTR, and 16 synonymous (max. 

spliceAI score: 0.02) variants, but no pLoF variants (see Table S2). Two COVhosp individuals 

(one male case, one female case; none of the population-based controls) carried two distinct 

rare variants in TLR7 respectively. The male individual (p.M854I, p.L988S) was previously 

reported in an independent study by Asano et al.19 (see Methods). In the female individual, 

biallelic occurrence of the two deleterious variants (p.A448V, p.R920K) could cause X-linked 

recessive disease. While no direct assessment of compound heterozygosity based on MIP 

sequencing data was possible, in silico haplotype assessment using the variant co-

occurrence tool of gnomAD v2.1.1 (see Web Resources)46 suggested that the two variants 

map to different haplotypes. 

 

The analyses also identified a missense variant exclusive to the Spanish subcohort 

(rs202129610, p.D332G). This was present in two population-based controls (MAF=0.038%, 

one female, one male), and three COVhosp individuals (MAF=0.33%, one female, two males), 

The frequency further increased in COVhosp individuals with no reported risk factors 

(MAF=1.0%). The variant was nominally significant in the single variant logistic regression 

analysis (POPlowrisk, OR=5.77 [1.49, 22.3], p=0.011), but was absent from the Regeneron 

dataset and the in silico pathogenicity prediction of this variant was ambiguous 

(CADD=18.45, REVEL=0.078). However, a previous study reported that this variant was 

hypomorphic, as based on in vitro experiments (7% NfκB activity19). This variant is absent 

from European individuals in gnomAD v3.1.2, and has only been reported to date in 

Latino/Admixed Americans (population-specific MAF of 0.019%). 
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Incorporation of functional and protein data increases TLR7 rare variant effect sizes 

Seventeen of the 26 TLR7 missense variants have previously been analyzed in vitro. In 

these experiments, seven variants were reported to decrease or even abolish the function of 

TLR718–20. These seven variants were combined to a new deleteriousness class (bLoF, 

biochemically loss-of-function, as proposed in Matuozzo et al.21) for the rare variant 

collapsing analysis. The resulting OR (POPlowrisk, bLoF, MAF<0.1%; 4/378 vs. 3/5347; 

p=1.73x10-10, OR=34.6 [6.8,177.2]; Figure 4a) was substantially higher than effect sizes 

based on in silico prediction alone (POPlowrisk, C10+M1, MAF<0.1%; OR=12.3; see above). 

 

To create a structure-based variant class, protein structure data for TLR7 were used for 3D 

modeling and protein energy calculation (Methods, Supplemental Methods). Based on this 

approach, eight of the 26 rare missense variants were classified as either damaging (n=4) or 

probably damaging (n=4) to the protein structure, and were aggregated into a new variant 

class (3D-P). Statistical analysis of this 3D-P class yielded even higher ORs (POPlowrisk, 3D-

P, MAF<0.1%; 7/378 vs. 4/5347; p=1,74x10-15, OR=46.5 [10.9, 198.7]) than the 

aforementioned variant classifications (see Figure 4a and Figure S6). In alignment with prior 

studies that identified TLR7 associations in younger individuals11,12,18–21, the analysis was 

repeated by defining cases as individuals with severe COVID-19 aged < 60 years, with no 

consideration of other risk factors, and comparing these individuals to all population-controls. 

Using the 3D-P TLR7 (MAF<0.1%) class, the proportion of carriers increased across the 

following three subgroups: all COVhosp individuals (0.45%); younger COVhosp individuals (age 

< 60 years, 1.25%); COVhosp individuals with no reported risk factors (1.85%; Figure 4b). 

Investigation of domain- and sex-specific variant effects in TLR7 

To date, X-linked TLR7 deficiency, as mediated by rare deleterious variants, has mainly 

been reported in males11,12,18–20, and a classical X-linked recessive mode of inheritance has 

been suggested11,12,18,19. However, two recent association studies also reported an 

enrichment of rare variants in females15,21. Given the present finding of an enrichment of rare 
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heterozygous TLR7 variants in females, and previous observations of TLR7 escaping X-

inactivation in immune cells24, analyses were performed to explore other potential mutational 

mechanisms. First, the distribution of deleterious rare variants across the TLR7 protein was 

studied in females with no reported risk factors (i.e., POPlowrisk; C10+M1, MAF<0.1%). In 

female cases, an overrepresentation of these variants was observed in the leucine-rich-

repeat (LRR) domain (see Figure 5a). Since the LRR domain is involved in the dimerization 

of TLR7 monomers, which is essential for the activation of downstream signaling 

pathways47, we hypothesized that missense variants located in this domain could potentially 

confer a dominant-negative effect by affecting protein dimerization. We approached this by 

using the TLR7 protein structure, and observed that four non-synonymous variants (Q138R, 

H298R, H630Y, I759V; all singleton, all missense) in the entire cohort were located within 5 

Ångström of the dimerization interface (I5AN; hashed residue labels in Figure 5). Two of 

these I5AN variants (Q138R, H630Y) were present in female COVhosp individuals with no 

reported risk factors, and were among the 3D-P variants (indicating a damaging structural 

effect, see above). No I5AN variant was observed in controls (POPlowrisk females, I5AN, 

MAF<1%; 2/126 vs. 0/2101; p=2.1x10-6; Figure 5). The two other variants (H298R, I759V) 

were observed in male controls (POPlowrisk males, I5AN, MAF<1%; 0/252 vs. 2/3245; 

p=0.65). 

 

To replicate the domain- and sex-specific TLR7 findings, analyses were performed in the 

cohort of the GenOMICC study, which has generated one of the largest collections of 

genome sequencing (GS) data from individuals with severe COVID-19 to date9. Overall, only 

very few numbers of TLR7 variants were observed in females, and no I5AN variant was 

observed in either female cases or controls. Detailed results are shown in Table S8 and 

methodical information is presented in the Supplemental Methods. 
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Discussion 

 

The present study investigated the contribution of rare genetic variants within 52 candidate 

genes to the etiology of severe COVID-19 and their relation to clinical risk factors, via the 

performance of joint and stratified analyses in two large, ethnically homogeneous cohorts 

recruited in the pre-vaccine era of the SARS-CoV-2 pandemic. The present findings 

reinforce prior genetic evidence for an etiological role of the X-chromosomal gene TLR7 in 

severe COVID-19 through the identification of a robust enrichment of deleterious rare 

variants. Notably, this enrichment was particularly pronounced in young individuals with 

severe COVID-19 with no reported demographic or clinical risk factors, and was also present 

in the female-only subgroup. Together with results from protein structural modeling, this 

suggests the existence of more complex pathomechanisms of TLR7 variants, beyond X-

linked recessive loss-of-function. The analyses also generated statistical evidence that rare 

variants in three genes of the interferon signaling pathway, specifically IFNAR2, IFIH1, and 

TBK1, contribute to severe COVID-19, though these findings require further follow-up. 

 

TLR7 is a cytosolic receptor that recognizes single-stranded RNA, and is a central 

component of the interferon signaling pathway during SARS-CoV-2 host defense23. Multiple 

lines of evidence suggest that deleterious variants within TLR7 play a causal role in severe 

COVID-1911,12,18–21, and this eventually resulted in recognition of TLR7 deficiency as an 

inborn error of immunity48 [OMIM 301051]. Research suggests that TLR7 deficiency is more 

frequent in younger (<60 years) severe COVID-19 cases21, which is consistent with the 

hypothesis that the contribution of host genetic factors is larger in young individuals49, as has 

been demonstrated for other risk loci for severe COVID-19, e.g., at the key GWAS locus 

3p21.3150. To refine the subgroup in which severe COVID-19 secondary to TLR7 deficiency 

is prevalent, the present analyses extended the list of non-genetic risk factors beyond age by 

including available data on diabetes, hypertension, and CAD. The largest effect size for the 
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association of rare deleterious TLR7 variants with severe COVID-19 was observed in young 

individuals with none of the aforementioned risk factors. Specifically, in these cases, an 

approximately 10-fold increase in the proportion of individuals carrying variants that were 

predicted to be deleterious was observed (2.4% vs. 0.24% in population based controls, 

C10+M1, MAF<0.1%). Variant classification via 3D protein structural analysis (3D-P, 

MAF<0.1%) further refined this overrepresentation to 1.85% in young individuals with severe 

COVID-19 and none of the listed risk factors, compared to 0.07% in population-based 

controls.  

 

In the female-only subgroup, the present analyses identified a strong enrichment of rare 

TLR7 variants that were predicted to be damaging. While such an enrichment has been 

observed in previous independent cohorts15,21, the underlying mechanisms were not 

explored. The proposed X-linked recessive model19 suggests that TLR7 deficiency would be 

restricted to females with biallelic deleterious mutations. While we identified one female with 

presumed compound heterozygosity, this individual was not among the cases of the 

POPlowrisk analysis and did not contribute to the observed burden. We therefore suggest the 

existence of an additional pathomechanism in heterozygous females, which may be 

dominant-negative in nature. We hypothesized that an affected TLR7 monomer would 

interfere with dimerization, thereby reducing TLR7 function by >50%. In support of this, an 

overrepresentation of TLR7 missense variants that surrounded the dimerization interface in 

3D space was observed in female cases. This observation adds to accumulating evidence 

for an allelic series underlying TLR7 dosage and its relevance to human immune disorders. 

The most recent support for this was provided by reports of hypermorphic or gain-of-function 

mutations in TLR7, which underlie monogenic forms of systemic lupus erythematosus51 

[OMIM 301080]. However, we were unable to obtain additional confirmation from the 

GenOMICC cohort due to power limitations, such as the very low number of variant 

observations and the differing cohort characteristics, including recruitment criteria. Future 
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functional in vitro investigation of the pathogenic variants that were found in the present 

female cases are required to confirm our hypothesis. 

 

The present analyses also identified a missense TLR7 variant (rs202129610, p.D332G) that 

was specific to the Spanish subcohort. This variant, which has in vitro evidence for 

deleteriousness19, was observed in 3 of 764 severe COVID-19 cases from Spain 

(MAF=0.33%), including 2 out of 147 young hospitalized individuals with no additional risk 

factors (MAF=1.0%). This is substantially higher than the allele frequency observed in the 

present Spanish controls (MAF=0.038%), as well as estimates from the Latin American 

population groups from the gnomAD data v3.1.2 (0.019%). 

 

Besides the results for TLR7, the present analyses generated several other interesting 

findings that require replication in larger cohorts. Specifically, associations with severe 

COVID-19 were found for IFNAR2 and IFIH1 in the rare variant collapsing analysis and for a 

rare missense TBK1 variant in the single variant analysis. All of the three genes are involved 

in the interferon signaling pathway23, and prior evidence for involvement in severe COVID-19 

has been presented13,52,53. The observed rare TBK1 missense variant (p.Arg358His) was 

found in two of 378 young cases with no reported risk factors and only one of 5,347 controls. 

Although statistical evidence for this variant was not robust to multiple testing in our study 

alone, its independent replication in the Regeneron dataset adds to the prior finding of a rare 

deleterious TBK1 variant in a child with severe COVID-1913. Furthermore, our observation of 

an enrichment of rare variants in the broader group of immunodeficiency genes, even after 

the exclusion of TLR7, suggests that this set of genes is likely to harbor a substantial 

proportion of the rare variant risk for severe COVID-19.  

 

While our results contribute to ongoing work into the role of rare variants within the overall 

host genetic architecture of severe COVID-19, the present study had some inherent 

limitations. First, the candidate gene approach, which was selected due to a lack of informed 
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consent for more systematic ES/GS analyses, limited the number of analyzed genes to 52. 

This prevented identification of additional risk genes, and also poses challenges regarding 

population substructure which might cause confounding in rare variant studies54. To address 

the latter, we took advantage of the availability of prior array-based genotypes25,26, which 

decreased the risk of false-positive findings due to population stratification. Second, gene 

selection was performed in August 2020, and thus subsequently reported risk genes were 

not examined, e.g., those located at loci that have been reported in recent global GWAS7,10. 

Third, comorbidity data were limited, and did not include the now well established risk factor 

increased weight - usually measured as body-mass-index (BMI) - which is one of the 

strongest clinical predictors of severe COVID-193. However, CAD, diabetes, and 

hypertension are all correlated with BMI, which suggests that the present analyses captured 

this effect at least in part. Of note, following initial evidence on hypertension being an 

independent risk factor for severe COVID-192, subsequent studies have reported ambiguous 

results55. Given that individual array-based genotypes are available for the individuals 

included in the present study, future refinement analyses might include the evaluation of 

genetically-mediated obesity via the integration of polygenic risk scores. Finally, in the 

present analysis, the selection of variants with a deleterious effect on protein function was 

mainly based on computational prediction tools, since (with the exception of some variants 

within TLR7) experimental data on genetic variants are limited. Particularly for missense 

variants, computational prediction tools are imperfect, and misclassification probably 

decreased the power of the gene-based collapsing analyses. However, a tailored, molecular 

modeling approach for missense variants within TLR7 was used in order to fine-tune the 

statistical analyses and led to increased effect size estimates. In the future, new approaches, 

such as novel computational prediction tools that build more strongly on protein structural 

information56–58, and data from deep mutational scanning experiments, could improve 

statistical power, and enhance the information content of the present data.  
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Despite the residual open questions, our stratified analysis approach refined the association 

between rare deleterious TLR7 variants and severe COVID-19. We suggest a candidate 

pathomechanism in females, which was identified on the basis of the integration of cohort-

level sequencing data and information on protein structure. 
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Figure Titles and Legends 

Figure 1: Study design and cohort characteristics. 

A Candidate genes included in targeted sequencing, grouped according to source of 

evidence (details in Table S1). Genes known to cause Human Inborn Errors of Immunity48 

are highlighted in bold, and genes excluded during quality control due to low sequencing 

coverage are crossed out. B Workflow describing the main steps of sample preparation, 

genotyping, sequencing, and computational processing. Boxes colored in gray indicate steps 

that were performed in previous studies25,26, MIP: Molecular Inversion Probe, QC: Quality 

control, PCA: Principal component analysis. C Number of individuals in the Italian (left) and 

Spanish (right) subcohorts. The number of COVhosp individuals with no reported risk factors 

(as described in Table 1) is highlighted in red. The proportion of females is shown in 

parentheses. D Number of variants observed in the cohort in relation to their minor allele 

frequency (MAF). In the present study, variants with MAF<1% were denoted as rare 

variants, while all others were considered common. Intensity of color shading indicates 

whether (dark) or not (light) variants have been reported with allele frequency in gnomAD 

r2.1 exomes. 
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Figure 2: Association analysis for individual variants. 

P-values (y-axis, negative log10) obtained in the association analysis of 1,211 non-singleton 

variants from the POPall analysis. Variants are grouped according to the genes (x-axis, 

sorted alphabetically) in which they are located. Results for case-control definitions other 

than POPall are provided in Figure S3. Dotted line: Lenient significance threshold, correcting 

for the number of variants tested (=4.1x10-5). Dashed line: Strict significance threshold, 

also taking into account multiple testing due to additional case-control definitions (=6.7x10-

6). Variants with p-values below the lenient significance threshold are marked in green and 

were only found in genes selected based on prior GWAS evidence, i.e., FYCO1 and XCR1 

at 3p21.31, IFNAR2 at 21q22.11. 
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Figure 3: Results of the gene-based collapsing analysis for rare variants with MAF 

<0.1%. 

P-values (y-axis, negative log10) are plotted for 52 genes (x-axis, sorted alphabetically). The 

various case-control definitions (see Table 1; excluding sex-stratified analyses) are depicted 

as symbols, while variant deleteriousness classes are coded according to color (M1: pLoF, 

M3 & M4: pLoF and moderate effect variants including missense in two graduations, 

C10+M1: CADD>10 or pLoF, SYN: synonymous, see Methods). Dashed line: Strict 

significance threshold, correcting for all tests conducted: (=8.7x10-6). Dotted line: More 

lenient significance threshold, correcting for the number of genes tested (=9.6x10-4). 

Results for sex-stratified analyses and variants with MAF<1% are provided in Figure S4.  

 

  

Jo
urn

al 
Pre-

pro
of



30 
 

Figure 4: Forest plot for TLR7 rare variant gene burden according to variant 

classification. 

A Odds ratios (ORs) of collapsed variants in TLR7 are shown for POPlowrisk at different minor 

allele frequency groups (MAF) and deleteriousness predictions (class). Within each group, 

results are presented for all individuals and for sex-stratified analyses. Error bars indicate 

95% confidence intervals. SYN: synonymous, C10+M1: CADD>10 or pLoF, bLoF: 

biochemical evidence for a loss-of-function effect, 3D-P: variant class based on 3D protein 

structure, see Methods. SYN variants with MAF<0.001 were only present in controls 

(OR=0.0, no confidence interval calculable). B Presence of 3D-P TLR7 (MAF<0.1%) variant 

carriers (black dots) in all COVhosp individuals (gray blue), COVhosp with age<60y (light blue) 

and COVhosp with no reported risk factors (“no RF”, dark blue). The number of individuals 

within each set is indicated by area, and is specified in the outer legend. Percentages in 

brackets represent carrier ratios. 
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Figure 5: Location of rare TLR7 variants within TLR7 protein domains. 

A Rare, deleterious TLR7 variants (POPlowrisk, C10+M1, MAF<0.1%) are mapped on the 

protein domains of TLR7 (x-axis: amino acid position). Phenotype, according to the POPlowrisk 

case-control definition, and the sex of variant carriers is indicated by color or caption. 

Variants of carriers previously reported in Asano et al.19 (see Methods and Table S2) are 

indicated by asterisks (*). TLR7 domains: LRR-NT (leucine-rich repeat, N-terminal, aa. 27-

65) orange; LRR regions 1-26 (aa. 66-786) blue; LRR-CT (leucine-rich repeat, C-terminal, 

aa. 787-839), violet; TIR (Toll/interleukin-1 receptor) domain (aa. 889-1033), green. B TLR7 

dimer overview, interface highlighted as gray surface (also in panel C). C Non-synonymous 

variants from panel A are highlighted in the 3D conformation of one TLR7 subunit (PDB ID: 

5GMH) and are presented from two angles. Phenotype (POPlowrisk, see A) and sex of the 

variant carriers are indicated by color coding. Variants within 5 Ångström of the subunit 

interface are highlighted by a hash (#, also in panel A). Variants located downstream of 

position T858 could not be plotted due to absence of the respective residues from the 

structure. Visualized using PyMOL Molecular Graphics System (Version 2.5.5 Schrödinger, 

LLC). 
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Tables 

Table 1: Case-control definitions used in the present study 

Analysis cases N cases 

(females/ 

males) 

controls N controls 

(females/ 

males) 

Case-control definitions for analyses involving population-based controls (POP) 

1) POPall Individuals hospitalized for 

COVID-19 who required 

respiratory support (COVhosp) 

1,772 

(605/1,167) 

Individuals from the general 

population with unknown 

SARS-CoV-2/COVID-19 status 

(Population controls) 

5,347 (2,102/ 

3,245) 

2) POPlowrisk COVhosp with no reported risk 

factors* 

378 

(126/252) 

same as above 5,347 (2,102/ 

3,245) 

Case-control definitions for analyses involving COVID-19 hospitalized individuals (COVhosp) only 

3) COVhosp by 

risk factors 

COVhosp with no reported risk 

factors* 

378 

(126/252) 

COVhosp with two or more of the 

reported risk factors* 

726 

(244/482) 

4) COVhosp by 

respiratory 

support 

COVhosp requiring respiratory 

support level 3 (intubation) or 

4 (ECMO, highest level) 

 

478 

(115/363) 

COVhosp requiring respiratory 

support level 1 (oxygen mask 

only, lowest level) 

661 

(284/377) 

*Risk factors for which phenotype data were broadly available: age ≥ 60 years, diabetes, 

hypertension, coronary artery disease (CAD). Notably, 66 of 1,772 COVhosp individuals did 

not have sufficient information on comorbidities and were therefore excluded from the risk 
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factor based stratification (POPlowrisk, COVhosp by risk factors). ECMO=extracorporeal 

membrane oxygenation. 
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This study explores genetic factors in severe COVID-19 in a Spanish/Italian cohort. Rare 

deleterious TLR7 variants were found in 2.4% of young cases. Incorporation of functional 

assay or protein modeling data yielded increased effect sizes. Further, TLR7 signals in 

females suggest additional mechanisms beyond X-chromosomal recessive inheritance. 
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